Novel Multilevel Inverter Carrier-Based PWM Method
Leon M. Tolbert, Senior Member, IEEE, and Thomas G. Habetler, Senior Member, IEEE

Abstract—The advent of the transformerless multilevel inverter topology has brought forth various pulsewidth modulation (PWM) schemes as a means to control the switching of the active devices in each of the multiple voltage levels in the inverter. An analysis of how existing multilevel carrier-based PWM affects switch utilization for the different levels of a diode-clamped inverter is conducted. Two novel carrier-based multilevel PWM schemes are presented which help to optimize or balance the switch utilization in multilevel inverters. A 10-kW prototype six-level diode-clamped inverter has been built and controlled with the novel PWM strategies proposed in this paper to act as a voltage-source inverter for a motor drive.

Index Terms—Carrier-based pulsewidth modulation, diode-clamped inverter, multilevel converter, multilevel inverter, multilevel pulsewidth modulation.

I. INTRODUCTION

MULTILEVEL pulsewidth modulation (PWM) inverters have been developed to overcome shortcomings in solid-state switching device ratings, so that large motors can be controlled by high-power adjustable-frequency drives. The most popular structure proposed as a transformerless voltage-source inverter is the diode-clamped converter based on the neutral-point converter proposed in [1]. A three-phase six-level diode-clamped inverter is shown in Fig. 1.

The two multilevel PWM methods most discussed in the literature are multilevel carrier-based PWM and multilevel space-vector PWM; both are extensions of traditional two-level PWM strategies to several levels. Investigators have proposed carrier-based multilevel sine-triangle PWM schemes for control of a multilevel diode-clamped inverter used as a motor drive or static var compensator [2]–[9]. Others have generalized space-vector PWM theory for use with multilevel inverters [10]–[12]. A third PWM method used to control a multilevel diode-clamped converter is with selective harmonic elimination [13], [14].

While the multilevel PWM techniques developed thus far have been extensions of two-level PWM methods, the multiple levels in a diode-clamped inverter offer extra degrees of freedom and greater possibilities in terms of device utilization, state redundancies, and effective switching frequency. In this paper, novel carrier-based multilevel PWM schemes are presented which take advantage of the special properties available in multilevel inverters to minimize switch utilization and/or balance the switching duty among its various levels.

II. EXISTING MULTILEVEL CARRIER-BASED METHODS

A. Subharmonic PWM Method

Other authors have extended two-level carrier-based PWM techniques to multilevel inverters by making use of several triangular carrier signals and one reference signal per phase. Carrara [3] developed multilevel subharmonic PWM (SH-PWM) as follows. For an \(m \)-level inverter, \(m - 1 \) carriers with the same frequency \(f_c \) and same peak-to-peak amplitude \(A_c \) are disposed such that the bands they occupy are contiguous. The reference, or modulation, waveform has peak-to-peak amplitude \(A_m \) and frequency \(f_m \) and is centered in the middle of the carrier set. The reference is continuously compared with each of the carrier signals. If the reference is greater than a carrier signal, then the active device corresponding to that carrier is switched on, and if the reference is less than a carrier signal, then the active device corresponding to that carrier is switched off. In multilevel inverters, the amplitude modulation...
The displacement phase angle between the reference and carrier set was varied incrementally by 0.01 rad from 0 to $2\pi/3$ rad (120°) to see what effect this would have on the voltage of the inverter is also shown in Fig. 3. The SFO-PWM technique can only be used for three-phase three-wire systems, and it enables the modulation index to be increased by 15% before overmodulation, or pulse dropping, occurs.

The addition of this triplen-offset voltage continuously centers all of the three reference waveforms in the carrier band, which Holmes [15] showed for carrier-based two-level PWM is similar to using space-vector PWM with the zero-voltage state divided evenly at the beginning and end of each half carrier interval. The analog equivalent of (3) and (4) is shown in Fig. 4 [16].

III. Carrier Phase Angle Effect on Switching

Previously, Menzies [5] considered two simple cases of what effect the displacement phase angle ϕ between the modulation waveform (sinusoidal reference) and the set of carrier waveforms, has on the switching of the active devices and the unfiltered inverter output waveform distortion where

$$V_a^* = |V| \cdot \cos(\theta - \phi).$$

The two cases considered were: 1) the carrier is a maximum when the reference is a maximum ($\phi = 0$), referred to as a W-type carrier set and 2) the case where the carrier is a minimum when the reference is a maximum, referred to as an M-type carrier set.

In this paper, all displacement phase angles were considered. The displacement phase angle between the reference and carrier set was varied incrementally by 0.01 rad from 0 to $2\pi/3$ rad (120°) to see what effect this would have on the
In Fig. 5, an example of controlling a six-level inverter with the SH-PWM method, with $m_f = 21$, $m_a = 0.8$, $\phi = 0.00$ rad, $N_{sw} = 34$. (b) SH-PWM, $m_f = 21$, $m_a = 0.8$, $\phi = 0.03$ rad, $N_{sw} = 38$. (c) SH-PWM, $m_f = 21$, $m_a = 0.8$, $\phi = 0.08$ rad, $N_{sw} = 42$. (d) SH-PWM, $m_f = 21$, $m_a = 0.8$, $\phi = 0.13$ rad, $N_{sw} = 46$. (e) SH-PWM, $m_f = 21$, $m_a = 0.8$, $\phi = 0.15$ rad, $N_{sw} = 50$.

In Fig. 6, an example with a six-level inverter with the SFO-PWM method and the same parameters as Fig. 5 shows that the total number of switchings can vary between 30–46. Table II shows the number of switchings at each level of the inverter for the examples represented in Fig. 6. Again, and even more dramatically, the upper and lower main device switchings of the active devices and the output waveform distortion.

Table I shows the number of switchings at each level of the diode-clamped inverter for the examples shown in Fig. 5. The upper and lower main device pairs (S_{a1}–S_{a1}, S_{a5}–S_{a5}, in a six-level inverter), in general, are switched more often than the intermediate switches for carrier-based control, where each level has the same carrier frequency and all levels of the inverter are being used ($m_a < 1$).

In Fig. 6, an example with a six-level inverter with the SFO-PWM method and the same parameters as Fig. 5 shows that the total number of switchings can vary between 30–46. Table II shows the number of switchings at each level of the inverter for the examples represented in Fig. 6. Again, and even more dramatically, the upper and lower main device switchings of the active devices and the output waveform distortion.

Table I

<table>
<thead>
<tr>
<th>Phase Angle, ϕ</th>
<th>Switches/Cycle (SH-PWM, $m_f = 6$, $m_a = 21$, $m_a = 0.8$)</th>
<th>N_{sw}</th>
<th>THD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00rad</td>
<td>S_{a1} S_{a2} S_{a3} S_{a4} S_{a5}</td>
<td>8</td>
<td>34</td>
</tr>
<tr>
<td>0.03rad</td>
<td>10 6 6 6 10 38</td>
<td>10 8 6 8 10 42</td>
<td>5.34%</td>
</tr>
<tr>
<td>0.08rad</td>
<td>10 8 10 10 46</td>
<td>10 10 10 10 50</td>
<td>5.27%</td>
</tr>
</tbody>
</table>

Note that, in a traditional two-level inverter with a single carrier wave, $N_{sw} = 42$ for $m_f = 21$, regardless of the displacement phase angle and for all values of $m_a < 1$.
Fig. 6. Output voltage waveforms for a six-level inverter controlled with SFO-PWM for various modulation displacement phase angles ϕ. (a) SFO-PWM, $m_f = 21, m_a = 0.8, \phi = 0.03$ rad, $N_{sw} = 46$. (b) SFO-PWM, $m_f = 21, m_a = 0.8, \phi = 0.08$ rad, $N_{sw} = 42$. (c) SFO-PWM, $m_f = 21, m_a = 0.8, \phi = 0.11$ rad, $N_{sw} = 38$. (d) SFO-PWM, $m_f = 21, m_a = 0.8, \phi = 0.13$ rad, $N_{sw} = 34$. (e) SFO-PWM, $m_f = 21, m_a = 0.8, \phi = 0.15$ rad, $N_{sw} = 30$.

Table II

<table>
<thead>
<tr>
<th>Phase Angle, ϕ</th>
<th>Switches/Cycle (SFO-PWM, $m_f = 6, m_a = 21, m_a = 0.8$)</th>
<th>$% V_{ref}$</th>
<th>THD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03rad</td>
<td>$S_{ad} = 14$, $S_{d2} = 6$, $S_{a2} = 6$, $S_{ad} = 4$, $S_{a2} = 4$, $N_{sw} = 46$</td>
<td>4.05%</td>
<td></td>
</tr>
<tr>
<td>0.08rad</td>
<td>$S_{ad} = 14$, $S_{d2} = 4$, $S_{a2} = 6$, $S_{ad} = 4$, $S_{a2} = 4$, $N_{sw} = 42$</td>
<td>3.94%</td>
<td></td>
</tr>
<tr>
<td>0.11rad</td>
<td>$S_{ad} = 14$, $S_{d2} = 4$, $S_{a2} = 4$, $S_{ad} = 4$, $S_{a2} = 4$, $N_{sw} = 38$</td>
<td>3.70%</td>
<td></td>
</tr>
<tr>
<td>0.13rad</td>
<td>$S_{ad} = 14$, $S_{d2} = 4$, $S_{a2} = 4$, $S_{ad} = 4$, $S_{a2} = 4$, $N_{sw} = 34$</td>
<td>3.41%</td>
<td></td>
</tr>
<tr>
<td>0.15rad</td>
<td>$S_{ad} = 14$, $S_{d2} = 4$, $S_{a2} = 4$, $S_{ad} = 4$, $S_{a2} = 4$, $N_{sw} = 30$</td>
<td>2.92%</td>
<td></td>
</tr>
</tbody>
</table>

Table II also shows the line–line voltage THD for the 3rd–19th harmonics for the examples shown in Fig. 6.

In Fig. 7, one should note that no harmonic component exists at the carrier ratio in the line–line voltage.

An algorithm was written to count the total number of switchings during a modulation cycle with varying values of m_f from 9 to 39 for the SH-PWM and SFO-PWM cases for values of m_a between 0.05–1.35 and for $m = 6$. Some interesting observations have been gleaned from these simulations.

1) If the carrier ratio m_f is a multiple of 16, the phase angle between the carrier and reference generally has no effect on the total number of switchings, i.e., N_{sw} does not vary with ϕ ($N_{sw} = 2 m_f$ for this case).

2) If the carrier ratio m_f is even (multiple of 2), then the maximum number of switchings for a modulation cycle...
is $2m_f$ and $N_{sy}=2m_f-2j$ where $j=0, 1, 2, 3$ (exact values for j depend on m_a and the carrier ratio m_f).

3) If the carrier ratio m_f is odd, then the maximum number of switchings for a modulation cycle is greater than $2m_f$ and $N_{sy}=2m_f+4j$ where $j=-2, -1, 0, 1, 2$ (exact values for j depend on m_a and the carrier ratio m_f).

4) The number of switchings per modulation cycle is a function of the amplitude modulation index, the carrier ratio, and the displacement phase angle. At lower amplitude modulation indexes (m_a in a six-level inverter with SH-PWM), some levels go unused [18].

These points show a major difference between two-level PWM and multilevel PWM. In two-level PWM, the switching frequency is always equal to the carrier frequency for modulation indexes less than unity. In multilevel PWM, the switching frequency can be less than or greater than the carrier frequency and is a function of the displacement angle between the carrier set and the modulation waveform. By choosing a phase displacement angle that minimizes the number of active device switchings for a particular m_a and m_f, switching losses can be reduced by as much as 35%, which increases the efficiency of the inverter considerably.

Another possible phase-shifting method not yet explored is to shift each of the carrier bands relative to one another instead of shifting the whole carrier band set relative to the modulation waveform.

IV. VARIABLE-FREQUENCY CARRIER BANDS

A method that could control or at least predict the number of switchings that occur at each level in a multilevel inverter would be advantageous. To accomplish this objective in a multilevel voltage-source inverter that has a sine-wave reference, knowledge of how long the reference dwells in each of the...
carrier time bands is required. The following section details how this information is obtained.

A. SH-PWM

In carrier-based multilevel PWM, the number of carrier bands is one less than the number of voltage levels \(m \), as shown in Fig. 8(a) for an inverter with an odd number of bands (even number of levels) and in Fig. 8(b) for an inverter with an even number of bands (odd number of levels). For a sine-wave modulation (reference) waveform centered in the carrier bands (SH-PWM), the duration of time that the waveform exists during each of the bands occupied can be computed as follows. Using the amplitude symmetry of the sine wave about the time axis, the band crossing times \(t_n \), where the reference waveform crosses from one band to an adjacent band, for bands above (or containing the zero axis in the case that \(m \) is even) can be computed from

\[
\begin{align*}
 t_n &= \arcsin \left(\frac{2 \cdot n - \text{mod} \left(\frac{m-1}{2} \right)}{m \cdot (m-1)} \right), \\
 n &= 0, 1, 2, \cdots, \left\lfloor \frac{m}{2} - 1 \right\rfloor
\end{align*}
\]

(6)

where \(\text{mod}(x/y) \) is the modulus operator. Also noting that the sine wave has a maximum amplitude at \(\pi/2 \), this is set equal to \(t_{[m/2]} \). From (6), the band dwell times in radians (starting at the band adjacent to the zero axis in the case that \(m \) is odd or the band occupying the zero axis in the case that \(m \) is even) are then calculated

\[
t_{\text{band}_n} = 2 \cdot (t_{n+1} - t_n),
\]

where \(n = 0, 1, 2, \cdots, \left\lfloor \frac{m}{2} - 1 \right\rfloor \).

(7)

Because of the symmetry of the sine wave about the zero axis, the bands below the zero axis are simply

\[
t_{\text{band}_{-n}} = t_{\text{band}_n}.
\]

(8)

The number of switchings per modulation cycle at each level of the inverter is dependent on the carrier frequency for that level and the duration of time that the reference waveform dwells within the level’s corresponding time band. If the carrier frequency for all of the levels is identical, the top and bottom levels will have many more switchings than the intermediate levels, as shown in the previous section.

One method to balance the number of active switchings among the levels is to vary the carrier frequency of each band based on the time duration that the reference waveform dwells during the time band. The relationship between the number of switchings per band, \(N_{\text{sw}_n} \), and the frequency ratio, \(m_{f_n} \), for each band \(n \) of an inverter is approximately given as follows:

\[
m_{f_n} = \frac{\pi \cdot N_{\text{sw}_n}}{t_{\text{band}_n}} = 2 \cdot (t_{n+1} - t_n).
\]

(9)
Fig. 10. Carrier bands for a seven-level inverter with SFO-PWM. (a) Modulation waveform and carrier bands. (b) Expanded view of straight segment.

From (9) and solutions to (7) and (8), the frequency ratio \(m_{f_n} \) for each band can be set such that each of the levels in the inverter has approximately the same number of active device switchings per cycle, i.e., \(N_{\text{swn}} \) is the same for all levels. Fig. 9 shows an example of the carrier waves and resulting output phase voltage from this control where \(N_{\text{swn}} \) has been set to 14. Harmonic spectra for the phase voltage and line–line voltage are also shown in Fig. 9.

B. SFO-PWM

To control the number of switchings in a multilevel inverter that is using SFO-PWM, different equations are needed to calculate the time duration that a sine-wave reference waveform with zero-sequence addition dwells in each band. Fig. 10(a) shows the carrier bands and reference waveform for multilevel SFO-PWM control. From this figure, one can see that the modulation waveform contains two segments that can be closely approximated as straight lines. Each of these line segments has a horizontal time duration of \(\pi/3 \) rad and a vertical amplitude of \(0.75 \cdot m_a \cdot (m - 1) \). Using the properties of proportional triangles from the enlarged area shown in Fig. 10(b), the following equations result:

\[
\frac{t_{\text{line}}}{\pi/3} = \frac{\text{int}(0.75 \cdot m_a \cdot (m - 1))}{0.75 \cdot m_a \cdot (m - 1)} \quad \text{(10)}
\]

and

\[
t_{\text{band}_n} = t_{\text{band}_{n-1}} = \frac{t_{\text{line}}}{\text{int}(0.75 \cdot m_a \cdot (m - 1))} \quad \text{(11)}
\]

where

\[
n = 0, 1, 2, \cdots, \left[\text{int}(0.75 \cdot m_a \cdot (m - 1))/2 \right].
\]

The two “humps” at the top and bottom of the SFO-PWM modulation waveform each have a time duration of \(2\pi/3 \) rad. Considering the case where the two humps are wholly contained within a time band, the time duration that the modulation waveform dwells within these two bands can be given as

\[
t_{\text{band}_{n+1}} = t_{\text{band}_{n+1}} = 2\pi/3 + 1/2 \left(\pi/3 - t_{\text{line}} \right) \quad \text{(12)}
\]

where \(n \) is the maximum value used in (11).

Once the duration of dwell time for each of the carrier bands is known, (9) can be used to balance the number of switchings per modulation cycle among the levels of the inverter.

Fig. 11 shows SFO-PWM where carriers have different frequencies \((m_a = 0.85, m_f = 15) \) for top and bottom bands, \(m_f = 55 \) for intermediate bands, \(\phi = 0.10 \).

Fig. 12. Prototype six-level 10-kW back-to-back diode-clamped converter.
Fig. 13. Experimental voltage and current waveforms for multilevel converter controlled with same-frequency carrier bands. (SH-PWM, \(m_a = 0.95 \), \(\phi = 0.02 \) rad, \(m_f = 25 \) for all bands). (a) Line–neutral voltages \(V_{an} \), \(V_{bn} \), and \(V_{cn} \). (b) Line–line voltage \(V_{ab} \) and current \(I_a \). (c) Harmonic spectrum for line–line voltage, \(V_{ab} \).

top and bottom bands (\(m_f = 11 \)), so that each level has 12 switchings per cycle. This example illustrates that balancing the switchings at each level of the inverter when using SFO-PWM requires a large difference between the frequency of the carrier bands that contain the two humps and the frequency of the carrier bands that intercept only the straight-line portion of the modulation waveform.

V. HARDWARE IMPLEMENTATION

A six-level three-phase back-to-back 10-kW converter prototype, pictured in Fig. 12, has been built for operation at a line voltage of 208 V for use as an adjustable-speed drive for an induction motor [17], [18]. The active switching devices used for the converter were 100-V 100-A MOSFET’s. Each internal dc level of the converter had a capacitance of 6.72 mF.

A table of switching patterns, which correspond to different amplitude modulation indexes and can be optimized for the fewest switches per cycle by determining the phase displacement angle to use at each amplitude modulation index, was calculated off-line and stored in a digital signal processor controller as 1024 states per cycle. A constant voltage/frequency control technique was applied to the motor drive system. As a user interface, a potentiometer was adjusted to apply an external 0–3-V signal to the controller. The 0–3-V signal mapped directly to a 0–60-Hz fundamental frequency for the gate signals sent to the inverter. Also, the switching patterns corresponding to the various modulation indexes were mapped from the 0–3-V external control signal.

The inverter was used to drive a 3/4-hp induction motor and was first controlled with SH-PWM with the following parameters: \(m_a = 0.95 \), \(m_f = 25 \), and \(\phi = 0.02 \) rad. The inverter’s output line–neutral voltage waveforms for all three phases are shown in Fig. 13(a), and the line–line voltage waveform \(V_{ab} \) and current waveform \(I_a \) are shown in Fig. 13(b). From the line–neutral waveforms, one can see that the top and bottom active devices in each phase switch 14 times per modulation cycle, whereas the intermediate devices only switch six times per modulation cycle.

The prototype inverter was also controlled using carrier bands with different carrier frequencies, as discussed in Section IV. Specifically, the top and bottom bands had a frequency index of 17, while the next innermost bands had a frequency index of 37, and the center band had a frequency index of 43. The amplitude modulation index \(m_a = 0.95 \), and \(\phi = 0.00 \) for this example. Fig. 14 shows the inverter’s output line–neutral and line–line voltage waveforms and current waveform when using this type of control method. All of the active devices in the inverter switch states either eight or ten times per modulation cycle.
The THD of the line–line voltage waveform in Fig. 13(b) is 4.6%, and no individual harmonic component has a magnitude greater than 3.4% of the fundamental. The THD for the 3rd through 29th harmonic of the line–line voltage waveform in Fig. 14(b) is 8.8%. From the harmonic spectrum shown in Fig. 14(c), the dominant harmonics (15th at 5.2% and 19th at 5.4%) are adjacent to the frequency index of 17.

For this particular example, the control scheme balanced the number of device switchings, but slightly increased the distortion in the inverter’s output voltage. However, because a sinusoidal line–line voltage is the desired waveform for most motor drives, an algorithm can be written to determine a priori the minimum harmonic distortion for a given amplitude modulation index and desired switch utilization by combining the procedures outlined previously in Sections III and IV.

VI. CONCLUSION

Multilevel carrier-based PWM offers many more degrees of freedom than traditional two-level PWM. In multilevel PWM, the switching frequency can be less than or greater than the carrier frequency and is a function of the displacement phase angle between the carrier set and the modulation waveform. By adjusting the displacement phase angle in multilevel PWM switching strategies, switching losses can be minimized for a more efficient multilevel inverter.

In traditional subharmonic PWM and switching-frequency optimal PWM, the top and bottom switches are switched much more often than the intermediate devices. A novel method to balance device switchings for all of the levels in a diode-clamped inverter has been demonstrated for SH-PWM and SFO-PWM by varying the frequency for the different triangle-wave carrier bands.

A six-level back-to-back diode-clamped converter prototype has established that these novel carrier-based switching strategies can be used to enable better switch utilization. The need for an algorithm to combine the two procedures studied (changing the phase displacement angle and varying the frequency of the carrier bands) has been identified.

REFERENCES

Leon M. Tolbert (S’88–M’91–SM’98), for a photograph and biography, see p. 44 of the January/February 1999 issue of this *Transactions*.

Thomas G. Habetler (S’83–M’83–SM’92), for a photograph and biography, see p. 44 of the January/February 1999 issue of this *Transactions*.